The Röntgen interaction and forces on dipoles in time-modulated optical fields
نویسندگان
چکیده
The Röntgen term is an often neglected contribution to the interaction between an atom and an electromagnetic field in the electric dipole approximation. In this work we discuss how this interaction term leads to a difference between the kinetic and canonical momentum of an atom which, in turn, leads to surprising radiation forces acting on the atom. We use a number of examples to explore the main features of this interaction, namely forces acting against the expected dipole force or accelerations perpendicular to the beam propagation axis.
منابع مشابه
Effects of Circadian Rhythm on Physical and physiological Performance of Military forces- Narrative Review
The 2017 Nobel Prize for medicine was awarded the biological clock Scientist, which shows the importance of this phenomenon in the life of living organisms. The circadian Rhythm (CR) through the created internal “clock” is responsible for regulating the daily performance of different organs of the body. The central body clock is the key factor to creating and maintaining this CR. External optic...
متن کاملGuiding spatial arrangements of silver nanoparticles by optical binding interactions in shaped light fields.
We demonstrate assembly of spheroidal Ag nanoparticle clusters, chains and arrays induced by optical binding. Particles with diameters of 40 nm formed ordered clusters and chains in aqueous solution when illuminated by shaped optical fields with a wavelength of 800 nm; specifically, close-packed clusters were formed in cylindrically symmetric optical traps, and linear chains were formed in line...
متن کاملTheoretical Analysis of the Optical Properties of Gold Nanoparticles Using DDA Approximation
This article describes a study, using numerical simulation, of the optical properties of nano particles as a function of their size. Many methods introduced to simulate and calculate the interaction of light and particle, such as Mie analysis, boundary element and finite element methods. The Discrete Dipole Approximation (DDA), wherein a target geometry is modeled as a ...
متن کاملOptical forces on small magnetodielectric particles.
We present a study of the optical force on a small particle with both electric and magnetic response, immersed in an arbitrary non-absorbing medium, due to a generic incident electromagnetic field. Expressions for the gradient force, radiation pressure and curl components are obtained for the force due to both the electric and magnetic dipoles excited in the particle. In particular, for the mag...
متن کاملForces on Magnetic Dipoles
Deduce expressions for the force on a permanent Ampèrian magnetic dipole with momentmA (due to a loop of electrical current), and for the force on a permanent Gilbertian magnetic dipolemG (due to a pair of opposite magnetic charges), when the dipoles are (instantaneously at rest in an external electromagnetic field. Experiments have been performed to determine whether a neutron [6] has an Ampèr...
متن کامل